

IPA 2014, Queen Mary University of London, August 2014

Dark Matter astrophysics

The particle DM hypothesis is the cornerstone of the current theory of the formation and evolution of galaxies

Early Universe (t ~ 0.4 Myrs)

Galaxy formation in a DM background

Fig. from Buchmüller 12

Weak-scale (100 GeV) thermal dark particles (WIMPs) "naturally" give the right DM abundance

Relic density constraints (example: thermal Sommerfeld-enhanced)

Sommerfeld-enhanced annihilation (e.g. Hisano +04, Arkani-Hamed +09)

 β = relative velocity

Appealing to boost DM annihilation in the MW halo to explain e.g. excess of positrons in Cosmic-rays (PAMELA, AMS...)

However, constraints from the early-Universe limit the maximum boost!

$$\frac{\mathrm{d}n_{\chi}}{\mathrm{d}t} + 3Hn_{\chi} = -\left\langle \sigma v \right\rangle \left(n_{\chi}^2 - \left(n_{\chi}^{EQ} \right)^2 \right)$$

$$\label{eq:BF} \mathrm{BF} = \frac{\langle \sigma v \rangle_0^{\Omega_{DM}} S(\sigma_{\mathrm{vel,h}})}{3 \times 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1}} \lesssim 100$$
 In the MW-halo today Zavala+10, Feng+10

CMB constraints (DM annihilation)

CMB energy spectrum: energy injection at $10^4 < z < 10^6$ produces a Bose-Einstein energy spectrum with chemical potential μ instead of a pure black body. Injection at $10^3 < z < 10^4$ produces a y-type distortion to (Illarionov & Sunyaev 75). Limit by COBE/FIRAS $|\mu| < 9x10^{-5}$

$$\mu = 1.4 \frac{\delta \rho_{\gamma}}{\rho_{\gamma}} = 1.4 \int_{t_1}^{t_2} \frac{\dot{\rho}_{\gamma}}{\rho_{\gamma}} dt = 1.4 \int_{t_1}^{t_2} \frac{f m_{\chi} \langle \sigma v \rangle n_{\chi}^2}{\rho_{\gamma,0} a^{-4}} dt,$$

weak constraints to Sommerfeld-enhanced models (Zavala+10, Hannestad & Tram 11) (PIXIE expected-limit: $|\mu| < 10^{-8}$)

CMB constraints (DM annihilation)

CMB energy spectrum: energy injection at $10^4 < z < 10^6$ produces a Bose-Einstein energy spectrum with chemical potential μ instead of a pure black body. Injection at $10^3 < z < 10^4$ produces a y-type distortion to (Illarionov & Sunyaev 75).

6000

5000

Limit by COBE/FIRAS $|\mu| < 9x10^{-5}$

$$\mu = 1.4 \frac{\delta \rho_{\gamma}}{\rho_{\gamma}} = 1.4 \int_{t_1}^{t_2} \frac{\dot{\rho}_{\gamma}}{\rho_{\gamma}} dt = 1.4 \int_{t_1}^{t_2} \frac{f m_{\chi} \langle \sigma v \rangle n_{\chi}^2}{\rho_{\gamma,0} a^{-4}} dt,$$

weak constraints to Sommerfeld-enhanced models (Zavala+10, Hannestad & Tram 11) (PIXIE expected-limit: $|\mu| < 10^{-8}$)

CMB power spectrum: energy injection during **recombination** broadens the surface of last scattering e.g. Padmanabhan & Finkbeiner 05, Slatyer +09...

WMAP 7-year results no DM annihilation

 $m_{DM}=10 \text{ GeV}, \langle \sigma_A v \rangle = 10 \langle \sigma_A v \rangle_{std}$ $m_{DM}=10 \text{ GeV}, \langle \sigma_A v \rangle = 100 \langle \sigma_A v \rangle_{std}$ $m_{DM}=100 \text{ GeV}, \langle \sigma_A v \rangle = 100 \langle \sigma_A v \rangle_{std}$ $m_{DM}=100 \text{ GeV}, \langle \sigma_A v \rangle = 1000 \langle \sigma_A v \rangle_{std}$

DM nature (decoupling)

halo mass seed ?

Is the minimum scale for galaxy formation set by the DM nature or by gas physics (or by both)?

DM nature (decoupling)

halo mass seed ?

Early Universe

Is the minimum scale for galaxy formation set by the DM nature or by gas physics (or by both)?

Is the minimum scale for A clue from the abundance galaxy formation set by the of dwarf galaxies? DM nature or by gas physics (or by both)? M_h~4x10¹⁰M_{Sun} (~dwarf scale) 90% complete 10 Number density per log unit velocity Local Volume (10 Mpc) **<u>CDM + current benchmark</u>** gal. form. models Klypin+14 overpredict the abundance of field dwarfs **Obs ± 15%** CDM (Zavala+09, Papastergis+11, Klypin+14) Strong suppression of gas and star formation 0.5 by SNe-driven winds alleviates but WDM 1.25 keV does not yet solve the tension in a CDM model A suppression in the original DM power 0.1 spectrum might hold the key... 0.05 20 40 80 100 200 10 60 V (km s⁻¹)

Unsolved problem in CDM!!

Onset of structure formation

Onset of structure formation

Are non-gravitational DM interactions irrelevant for galaxy formation?

Cross section $\sigma/m_{\chi} \ [\rm cm^2/gr]$	Characteristic velocity $\tilde{v} \; [\rm km/s]$
SI χ -nucleon $\lesssim 10^{-23}$	~ 200
$m_{\chi} \in (0.1 - 5) \text{ TeV}$	(local halo)
LUX	
$\chi\chi ightarrow bar{b}~\lesssim 10^{-10}$	~ 10
$m_{\chi} \in (0.1-1) \text{ TeV}$	(dSphs)
Fermi-LAT	

Does it interact with ordinary matter?

 χ -nucleus interactions extremely low to impact structure information

Does it interact with itself (annihilation)?

 $\chi-\chi$ self-annihilation extremely low to impact structure information

1 cm²/g ~ 2 barns/GeV

Virtually all direct and indirect searches assume CDM structure formation!!

Onset of structure formation

Does it interact with itself (collisions)?

interactions irrelevant for

Bullet Cluster (Clowe +06)

(Randall+08) $\sigma/m < 1.25 \text{ cm}^2/\text{gr}$

Caveat: DM-only simulation gas and stars might weaken the constraint

velocity dispersion [km/s]

CDM + WIMPs (looking for a signal in γ-rays)

Credit: NASA/Fermi-LAT (5 years)

A possible signal in the inner galaxy (Daylan+14)

- ~ thermal cross section (m_x ~ 35 GeV)
- spherical morphology
- inner DM profile steeper than CDM (adiabatic contraction)
- some models in tension with antiproton/positron data from PAMELA/AMS-02 (Bringmann+14)

Search for DM annihilation in dSphs (Fermi-LAT collaboration 14)

MW satellites

main "nuisance": inner DM structure in dSphs

(PeV neutrinos as DM messengers)

- IceCube discovery of high-energy cosmic neutrinos (including 3PeV events) (IceCube collaboration 13-14)
- PeV DM is a possibility:
 - DM-decay e.g. Feldstein+13)
 - First proposal of DM-annihilation (Zavala 14)

Zavala 14 (arXiv:1404.2932)

IceCube cosmic neutrinos MW satellites coincident events

DM annihilation signal would be expected to show correlation with MW subhaloes

Intriguing, but random coincidence is likely

Structure formation in a non-CDM Universe

In the standard Cold Dark Matter paradigm galaxies form in a purely gravitational DM background

The nature of DM as a particle is therefore irrelevant for galaxy formation and evolution

There is **no strong evidence** to support this **strong** hypothesis

If DM is effectively warm and/or collisional then predictions for DM signals need to consider the synergy between the DM nature and structure formation

A richer DM (initial) power spectrum

Reducing small-scale power suppresses the formation of low-mass haloes and delays that of massive ones: WDM (e.g. Bode+01) CDM+interactions (e.g. Boehm+02)

Collisional damping: e.g. photons (γCDM, Boehm+14), dark radiation (ADM, Cyr-Racine+13)

A richer DM (initial) power spectrum

NON-LINEAR EVOLI

simulations

(N-body

Reducing small-scale power suppresses the formation of low-mass haloes and delays that of massive ones: WDM (e.g. Bode+01) CDM+interactions (e.g. Boehm+02)

Collisional damping: e.g. photons (γCDM, Boehm+14), dark radiation (ADM, Cyr-Racine+13)

Structure formation in a SIDM Universe

Collisional Boltzmann equation

 $\frac{df}{dt} = C[f, \sigma_{\rm sc}]$

Structure formation in a SIDM Universe

Structure formation in a SIDM Universe

Concluding remarks

- decisive decade for the "standard" DM model (CDM + WIMPs): experiments reaching the "expected" WIMP cross sections (Fermi, LUX,...)
- potential signals must be examined with a multidisciplinary approach:
 - consistency with multi-epoch astrophysical observations
 - theoretically viable in particle physics models
- absence of signals and/or inconsistency with CDM might lead to a paradigm shift
- astrophysical constraints are weak enough for the DM nature to play a major role in the formation and evolution of galaxies
- the central structure of DM haloes might hide a clue of a fundamental guiding principle for a complete DM theory

EXTRA SLIDES

Relic density constraints (example: thermal Sommerfeld-enhanced)

Relic density constraints (example: thermal Sommerfeld-enhanced)

Collisional Boltzmann equation:

$$\frac{\mathrm{d}n_{\chi}}{\mathrm{d}t} + 3Hn_{\chi} = -\left\langle \sigma v \right\rangle \left(n_{\chi}^2 - \left(n_{\chi}^{EQ} \right)^2 \right)$$

DM distribution in the MW satellites: the core-cusp problem

Other analysis suggest that **both cores and cusps can fit the data** (e.g. Breddels & Helmi 13, Richardson & Fairbairn 14, Strigari, Frenk & White 14)

Controversial issue in CDM!!