4.- Relativistic Dynamics

4a) Four-vectors in Minkowski space

$>$ In Relativity, time no longer holds the absolute role it has in Newtonian Mechanics. The symmetry between space and time in the Lorentz transformation suggests a unification of the space and time coordinates.

4a) Four-vectors in Minkowski space

$>$ In Relativity, time no longer holds the absolute role it has in Newtonian Mechanics. The symmetry between space and time in the Lorentz transformation suggests a unification of the space and time coordinates.
$>$ Vectors in Newtonian Mechanics are defined in Euclidean geometry in 3D space

- For instance, the displacement vector $d \vec{r}$ is key to build the kinematics and mechanics in Newtonian Mechanics

4a) Four-vectors in Minkowski space

$>$ In Relativity, time no longer holds the absolute role it has in Newtonian Mechanics. The symmetry between space and time in the Lorentz transformation suggests a unification of the space and time coordinates.
$>$ Vectors in Newtonian Mechanics are defined in Euclidean geometry in 3D space

- For instance, the displacement vector $d \vec{r}$ is key to build the kinematics and mechanics in Newtonian Mechanics
- The coordinate values of the displacement vector depend on the coordinate system chosen (cartesian, spherical,..) and the reference frame (whether there is a translation, rotation, Galilean transformation.
- BUT, the magnitude of $\mid \vec{r})$ is an invariant (as we saw in Chapter 1)
i.e. distances are invariant in Newtonian Mechanics

4a) Four-vectors in Minkowski space
Vectors in Newtonian Mechanics are defined in Euclidean geometry in 3D space

- For instance, the displacement vector $d \vec{r}$ is key to build the kinematics and mechanics in Newtonian Mechanics
- The coordinate values of the displacement vector depend on the coordinate system chosen (cartesian, spherical,..) and the reference frame (whether there is a translation, rotation, Galilean transformation.
- BUT, the magnitude of $\mid \vec{r})$ is an invariant (as we saw in Chapter 1) ide. distances are invariant in Newtonian Mechanics
\rightarrow In $S R$, distances (space intervals) are no longer invariant, instead we have a new invariant quantity: the spacetime interval
$d s^{2}=d r^{2}-c^{2} d t^{2} \rightarrow$ "distance" not in Euclidean $3 D$ space but on Minkowski space

4a) Four-vectors in Minkowski space

This implies the need of a new type of vector space in four dimensions that is formulated within Minkowski space and related to the Lorentz transformations
\rightarrow Let's introduce Key definitions and notation
Four position vector \rightarrow space and time are unified in a single vector

$$
x^{\mu} \equiv\left(\begin{array}{c}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right) \equiv\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)
$$

"column vector"
contravariant

4a) Four-vectors in Minkowski space

This implies the need of a new type of vector space in four dimensions that is formulated within Minkowski space and related to the Lorentz transformations
\rightarrow Let's introduce Key definitions and notation
Four position vector

$$
x^{\mu} \equiv\left(\begin{array}{c}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right) \equiv\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)
$$

"column vector"
contravariant

$$
\begin{aligned}
x_{\mu} & \equiv\left(\begin{array}{llll}
x_{0} & x_{1} & x_{2} & x_{3}
\end{array}\right) \\
& \equiv\left(\begin{array}{llll}
-c t & x & y & z
\end{array}\right)
\end{aligned}
$$

"row vector"
covariant

4a) Four-vectors in Minkowski space

This implies the need of a new type of vector space in four dimensions that is formulated within Minkowski space and related to the Lorentz transformations
\rightarrow Let's introduce Key definitions and notation
Four position vector \rightarrow four displacement vector is simply $d x^{\mu}$ or

$$
x^{\mu} \equiv\left(\begin{array}{c}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right) \equiv\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)
$$

$$
\begin{aligned}
x_{\mu} & \equiv\left(\begin{array}{llll}
x_{0} & x_{1} & x_{2} & x_{3}
\end{array}\right) \\
& \equiv\left(\begin{array}{llll}
-c t & x & y & z
\end{array}\right)
\end{aligned}
$$

"column vector"
contravariant
"row vector"
covariant

Contravariant- and covariant-like transformations*

* These are, formally, relatively advanced geometrical concepts (part of a course in differential geometry or tensor analysis)
* I will only give an informal introduction. For now, simply take the contravariant and covariant names as two different ways of representing a 4 -vector in SR

Contravariant- and covariant-like transformations*
\rightarrow The distinction between these two cases is connected to how the components of the 4 -vectors transform under a coordinate transformation

Contravariant- and covariant-like transformations*
\rightarrow The distinction between these two cases is connected to how the components of the 4 -vectors transform under a coordinate transformation

* In the same way as a 3-vector in Euclidean space remains the same vector no matter the coordinate system, a 4-vector in Minkowski space remains the same irrespective of the coordinate system
\rightarrow It is the values of the coordinates themselves that are different across different coordinate sy stems

Contravariant- and covariant-like transformations*
\rightarrow The distinction between these two cases is connected to how the components of the 4 -vectors transform under a coordinate transformation
contravariant: $\quad v^{\prime \mu}=\left(\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}\right) v^{\nu}$
covariant : $\quad v_{\mu}^{\prime}=\left(\frac{\partial x_{\mu}}{\partial x_{\nu}^{\prime}}\right) v_{\nu}$
Notation: $\mu=1,2,34 \quad \nu=1,2,3,4$
$V^{\prime \mu} \equiv$ contravariant like vector in (s^{\prime}) coordinate system (frame)
$V^{\nu} \equiv$ contravariant like vector in (S) coordinate system (frame)

Contravariant- and covariant-like transformations*
\rightarrow The distinction between these two cases is connected to how the components of the 4 -vectors transform under a coordinate transformation
contravariant: $\quad v^{\prime \mu}=\left(\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}\right) v^{\nu}$
covariant : $\quad v_{\mu}^{\prime}=\left(\frac{\partial x_{\mu}}{\partial x_{\nu}^{\prime}}\right) v_{\nu}$
Notation: $\mu=1,2,34 \quad \nu=1,2,3,4$
$V_{\mu}^{\prime} \equiv$ covariant like vector in (s^{\prime}) coordinate system (frame)
$V_{\mu} \equiv$ covariant like vector in (S) coordinate system (frame)

Contravariant- and covariant-like transformations*
\rightarrow The distinction between these two cases is connected to how the components of the 4 -vectors transform under a coordinate transformation

$$
\begin{array}{ll}
\text { contravariant: } & v^{\prime \mu}=\left(\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}\right) v^{\nu}
\end{array} \gg \begin{aligned}
& \text { Transformation } \\
& \text { covariant : } \\
& \text { matrices between } \\
& \text { coordinate systems }
\end{aligned}
$$

Contravariant- and covariant-like transformations*
\rightarrow The distinction between these two cases is connected to how the components of the 4 -vectors transform under a coordinate transformation
contravariant:

$$
\begin{aligned}
& v^{\prime \mu}=\left(\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}\right) v^{\nu} \\
& v^{\prime} \mu^{\circ}=\left(\frac{\partial x_{\mu}}{\partial x_{\underline{\nu}}^{\prime}}\right) V_{\underline{\nu}}
\end{aligned}
$$

\Rightarrow Transformation matrices between
covariant : coordinate systems

Notation:
\rightarrow one index means a vector; two indices is a tensor (represented by a matrix)
\rightarrow Einstein notation for indices: when an index appears twice, it indicates a sum over all the values the index can have (more on this later)
\rightarrow position (covariant / contravariant) of main index preserved

Contravariant- and covariant-like transformations*
\rightarrow Instead of given a formal introduction, I will give an example of these two different types of transformations

Contravariant- and covariant-like transformations*
\rightarrow Instead of given a formal introduction, I will give an example of these two different types of transformations

\rightarrow Imagine a region in space filled with a fluid (not in thermal equilibrium)
\rightarrow Across this region we can define:

1) a temperature field $T(\vec{r})$: a temperature value at each point in space
2) a velocity field $\vec{V}(\vec{r})$: a velocity vector at each point in space

Contravariant- and covariant-like transformations*

1) Covariant case: temperature gradient $\vec{\nabla} T$
\rightarrow The temperature gradient is a vector that characterizes how the temperature in the fluid changes across space in different directions

$$
\begin{aligned}
& \text { (iD) }
\end{aligned}
$$

\rightarrow Einstein notation is a convenient abreviation

Contravariant- and covariant-like transformations*

1) Covariant case: temperature gradient $\vec{\nabla} T$
\rightarrow The temperature gradient is a vector that characterizes how the temperature in the fluid changes across space in different directions

$$
\begin{array}{cc}
\vec{\nabla} T=\frac{\partial T}{\partial x^{i}} \hat{e}^{i}=\frac{\partial T}{\partial x} \hat{e}^{1}+\frac{\partial T}{\partial y} \hat{e}^{2}+\frac{\partial T}{\partial z} \hat{e}^{\downarrow} \hat{e}^{\downarrow} \quad i=1,2.3 \\
\text { (3D)Einstein notation } & \widehat{e}_{x} \quad \hat{e}_{y} \quad \widehat{e}_{z} \quad \equiv \text { unit vectors }
\end{array}
$$

\rightarrow Note that we chose cartesian cord., but we could have used other cord., for example spherical

$$
\begin{array}{lll}
\vec{\nabla} T=\frac{\partial T}{\partial x^{\prime i}} \hat{e}^{\prime} & \text { with } & \hat{e}^{1}=\hat{e}_{r} \quad \hat{e}^{\prime 2}=\hat{e}_{\theta} \quad \hat{e}^{\prime 3}=\hat{e}_{\varphi} \\
& \text { and } \quad \frac{\partial T}{\partial x^{\prime}}=\frac{\partial T}{\partial r}=T_{r} & \ldots . .
\end{array}
$$

Contravariant- and covariant-like transformations*

1) Covariant case: temperature gradient $\vec{\nabla} T$
\rightarrow The temperature gradient is a vector that characterizes how the temperature in the fluid changes across space in different directions

$$
\vec{\nabla} T=\underbrace{\frac{\partial T}{\partial x^{i}} \hat{e}^{i}}_{\text {cartesian }}=\underbrace{\frac{\partial T}{\partial x^{\prime i}} \hat{e}^{\prime i}}_{\text {spherical }} \quad \begin{aligned}
& \hat{e}^{i} \equiv \text { Cartesian unit vector basis } \\
& \hat{e}^{i j}=\text { Spherical unit vector basis }
\end{aligned}
$$

Notice that the gradient itself as a 3D vector is the same (magnitude and direction) independent of the coordinate system, but the components of the gradient vector take different values in different coordinate systems

Contravariant- and covariant-like transformations*

1) Covariant case: temperature gradient $\vec{\nabla} T$
\rightarrow The temperature gradient is a vector that characterizes how the temperature in the fluid changes across space in different directions

$$
\vec{\nabla} T=\underbrace{\frac{\partial T}{\partial x^{i}} \hat{e}^{i}}_{\text {cartesian }}=\underbrace{\frac{\partial T}{\partial x^{i}} \hat{e}^{i}}_{\text {spherical }}
$$

$\hat{e}^{i} \equiv$ Cortesian unit vector basis
$\hat{\mathrm{e}}^{i}=$ Spherical unit vector basis
\rightarrow How do the components of the vectors transform across coordinate systems?
e.g. $\quad T_{r} \equiv \frac{\partial T}{\partial r}=\frac{\partial T}{\partial x^{i}} \frac{\partial x^{i}}{\partial r} \quad$ (chain rule + Einstein notation)
inverse of transformation of coordinates $\xrightarrow[\substack{\text { componenents of } \\ \text { in Carte stan }}]{\text { 就 }}$ cartesian \rightarrow spherical

Contravariant- and covariant-like transformations*

1) Covariant case: temperature gradient $\vec{\nabla} T$

$$
\vec{\nabla} T=\underbrace{\frac{\partial T}{\partial x^{i}} \hat{e}^{i}}_{\text {cartesian }}=\underbrace{\frac{\partial T}{\partial x^{\prime i}} \hat{e}^{\prime i}}_{\text {spherical }}
$$

$\hat{e}^{i} \equiv$ Cartesian unit vector basis
$\hat{e}^{\prime \dot{ }}=$ Spherical unit vector basis
\rightarrow How do the components of the vectors transform across coordinate systems?
e.g. $\quad T_{r} \equiv \frac{\partial T}{\partial r}=\frac{\partial T}{\partial x^{i}} \frac{\partial x^{i}}{\partial r}$ (chain rule + Einstein notation)
\downarrow inverse of transformation of coordinates components of $\vec{\nabla} T$ cartesian \rightarrow spherical
\Rightarrow This matches the definition of a covariant-like transformation

$$
\text { covariant : } v_{\mu}^{\prime}=\left(\frac{\partial x_{\mu}}{\partial x_{\nu}^{\prime}}\right) v_{\nu}
$$

Contravariant- and covariant-like transformations*

1) Covariant case: temperature gradient $\vec{\nabla} T$

$$
\vec{\nabla} T=\underbrace{\frac{\partial T}{\partial x^{i}} \hat{e}^{i}}_{\text {cartesian }}=\underbrace{\frac{\partial T}{\partial x^{i i}} \hat{e}^{\prime i}}_{\text {spherical }}
$$

$\hat{e}^{i} \equiv$ Cartesian unit vector basis
$\hat{e}^{-i}=$ Spherical unit vector basis
\rightarrow How do the components of the vectors transform across coordinate systems?
e.g. $T_{r} \equiv \frac{\partial T}{\partial r}=\frac{\partial T}{\partial x^{i}} \frac{\partial x^{i}}{\partial r} \quad$ (chain rule + Einstein notation)
components of $\vec{\nabla} T$
in Cartesian
\Rightarrow This matches the definition of a covariant -like transformation
inverse of transformation of coordinates cartesian \rightarrow spherical

$$
\text { covariant: } v_{\mu}^{\prime}=\left(\frac{\partial x_{\mu}}{\partial x_{\nu}^{\prime}}\right) V_{\nu}
$$

\rightarrow Why the name "covariant"? $\rightarrow \hat{e}_{r}=\frac{\partial x^{i}}{\partial r} \hat{e}_{i}$ (transfamation law for unit vectors)
\Rightarrow The components of the gradient transform in the same way as the Unit vector basis. This is where the name co-variant comes from

Contravariant- and covariant-like transformations*
2) Contravariant case: velocity field $\vec{V}(\vec{r})$

$$
\vec{V}(\vec{r})=\frac{d x^{\dot{j}}}{d t} \hat{e}_{;}=\frac{d x}{d t} \underset{e_{1}}{\hat{e}_{1}}+\frac{d y}{d t} \hat{e}_{2}+\frac{d z}{d t} \hat{e}_{3} \quad \underset{e_{x}}{\hat{e}_{y}} \quad \text { (artesian Coordinates }
$$

Contravariant- and covariant-like transformations*
2) Contravariant case: velocity field $\vec{v}(\vec{r})$

$$
\vec{V}(\vec{r})=\frac{d x^{\dot{d}}}{d t} \hat{e}_{i}=\frac{d x}{d t} \hat{e}_{\downarrow}+\frac{d y}{d t} \hat{e}_{2}+\frac{d z}{d t} \hat{e}_{3} \quad \text { Cartesian Coordinates }
$$

In spherical coordinates:

$$
\vec{v}(\vec{r})=\frac{d x^{\prime i}}{d t} \hat{e}_{i}^{\prime} \quad \hat{e}_{1}^{\prime} \equiv \hat{e}_{r} \ldots .
$$

\rightarrow The transformation for the radial component is: $V_{r}=\frac{d r}{d t}=\frac{\partial r}{\partial x^{i}} \frac{d x^{i}}{d t} \quad$ (Chain rule + Einstein notation) Transformation of coordinates $\rightarrow \begin{gathered}\text { components of the } \\ \text { velocity field in }\end{gathered}$ Cartesian \rightarrow Spherical Cartesian coordinates

Contravariant- and covariant-like transformations*
2) Contravariant case: velocity field $\vec{v}(\vec{r})$
cartesian Spherical

$$
\vec{V}(\vec{r})=\frac{d x^{i}}{d t} \hat{e}_{i}=\frac{d x^{\prime i}}{d t} \hat{e}_{i}^{\prime}
$$

\rightarrow How do the components of the vectors transform across coordinate systems?

$$
\begin{aligned}
& V_{r}=\frac{d r}{d t}=\frac{\partial r}{\partial x^{i}} \frac{d x^{i}}{d t} \rightarrow \begin{array}{c}
\text { Chain rule }+ \text { Einstein notation) } \\
\begin{array}{c}
\text { Transformation of of coordinates } \\
\text { Cartesian }
\end{array} \rightarrow \text { Spheres of the } \\
\text { verity field } \\
\text { Cartesian coordinates }
\end{array}
\end{aligned}
$$

\Rightarrow This matches the definition of a contravariant-like transformation

$$
\text { contravariant: } v^{\prime \mu}=\left(\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}\right) v^{\nu}
$$

\rightarrow The components of the velocity field transform in the inverse (contra) way as the unit vectors $\hat{e}_{r}=\frac{\partial x^{i}}{\partial r} \hat{e}_{i}$

Metric: defining four-vector magnitudes

$$
x_{\mu \nu}=\left(\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Minkows ki metric
\rightarrow a metric is a mathematical object that captures the geometry of spacetime (Minkows K i in $S R$; it is generalized in $G R$)

Metric: defining four-vector magnitudes

$$
x_{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Minkowski metric
\rightarrow a metric is a mathematical object that captures the geometry of spacetime (Minkows K in $S R$; it is generalized in $G R$)

* The way is written here is valid for the sign convention we chose for the spacetime interval: $d s^{2}=d x^{2}-c^{2} d t^{2}$; for the other sign convention $(-) \leftrightarrow(t)$

Metric: defining four-vector magnitudes

$$
n_{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Minkowski metric
$\rightarrow a$ metric is a mathematical object that captures the geometry of spacetime (Minkows Ki in $S R$; it is generalized in $G R$)
\rightarrow For the purposes of this course, it is sufficient to think of the metric as a matrix that defines the magnitude of a four vector

4 -vector magnitude

$$
\left|V^{\alpha}\right|^{2}=\pi_{\mu \nu} V^{\mu} V^{\nu} \quad \text { (Einstein notation) }
$$

Metric: defining four-vector magnitudes

$$
{\mu_{\mu \nu}}=\left(\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Minkowski metric
\rightarrow a metric is a mathematical object that captures the geometry of spacetime (Minkows K in $S R$; it is generalized in $G R$)
\rightarrow For the purposes of this course, it is sufficient to think of the metric as a matrix that defines the magnitude of a four vector 4-vector magnitude

$$
\left|V^{\alpha}\right|^{2}=\Pi_{\mu \nu} V^{\mu} V^{\nu} \quad \text { (Einstein notation) }
$$

\rightarrow This is analogous to the scalar/dot/inner product in 3D Euclidean geometry

$$
|V|^{2}=V_{x}^{2}+V_{y}^{2}+V_{z}^{2} \equiv \delta_{i 0} V^{i} V^{j} ; i=1,2,3 \quad \text { (Einstein notation) }
$$

with $\quad \delta_{i j}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \equiv$ Kronecker delta \rightarrow "metric" in Euclidean Space

Metric: defining four-vector magnitudes

$$
n_{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Minkowski metric
$\rightarrow a$ metric is a mathematical object that captures the geometry of spacetime (Minkowski in $S R$; it is generalized in $G R$)
\rightarrow For the purposes of this course, it is sufficient to think of the metric as a matrix that defines the magnitude of a four vector

4 -vector magnitude

$$
\left|V^{\alpha}\right|^{2}=\pi_{\mu \nu} V^{\mu} V^{\nu} \quad \text { (Einstein notation) }
$$

\rightarrow The metric is abs Used to go from the contravariant to covariant versions of a vector: lowering/rising indices

$$
X_{\mu}=x_{\mu \nu} X^{\nu} \quad X^{\mu}=\pi^{\mu \nu} X_{\nu} \quad \text { metric lowers/vises indices } \begin{gathered}
\text { covariant } \leftrightarrow \text { contravariant }
\end{gathered}
$$

